

Basic Technical Data

nominal electrical output	800	kW
maximum heat output ¹⁾	917	kW

1) Maximum heat output is a sum of heat outputs of secondary and aftercooler circuit at their full utilization

load	50	75	100	%
heat output	540	727	917	kW
fuel input	1034	1460	1891	kW
electrical efficiency	38,7	41,1	42,3	%
heat efficiency	52,2	49,8	48,5	%
total efficiency (fuel utilization)	90,9	90,9	90,8	%
gas consumption	109	155	200	m ³ /hr

The Basic Technical Data are applicable for the standard conditions pursuant to the "Technical instructions" document.

The minimum permanent electrical output must not drop below 50 % of the nominal output.

Gas consumption is expressed under the invoicing conditions (15°C, 101.325 kPa).

Observance of Emission Limits

emissions 1)	CO	NOx	
with 5% of O ₂ in exhaust gases	300	500	mg/Nm ³

1) Mentioned emission values of NOx are possible to decrease down to $100 mg/Nm^3$ (an option).

Generator

type	MJB 450	MB4
producer	MARE	LLI
cos φ	0,8/1,0	
efficiency in the working point	97,1	%
voltage	400	V
frequency	50	Hz

Engine

type	TCG 201	6 V16 C
producer	MWM	
number of cylinders	16	
arrangement of cylinders	V	
$bore \times stroke$	132/160	mm
displacement	35	dm ³
compression ratio	12 : 1	
speed	1500	rpm
nominal oil consumption	0,2	g/kWh
max. engine output	825	kW
TCG2016V16C 400V natural gas; 15.12.2014		

Thermal System

Secondary Circuit

heat carrier	water	
circuit's heat output	861	kW
nominal water temperature, input / output	70/90	°C
return water temperature, min / max	40/70	°C
nominal flow rate	10,3	kg/s
max. working pressure	600	kPa
allowed operation over-pressure on connecting flanges 1)	450	kPa
min. pressure in system	100	kPa
water volume in CHP unit circuit	100	dm ³
pressure reserve of pump for covering pressure losses outside container	50	kPa
nominal temperature drop	20	°C

¹⁾ highest allowed over-pressure created by connected system to secondary circuit in place of connecting flanges.

Primary Circuit

heat carrier	water + ethylene glycol	
ethylene glycol's concentration	35	%
circuit's heat output	861	kW
max. working pressure	300	kPa
water volume in CHP unit circuit	900	dm ³

Aftercooler Circuit 1)

heat carrier	water + ethylene glycol	
ethylene glycol's concentration	35	%
circuit's heat output	56	kW
coolant temperature (outlet from CHP unit – informative)	46,0	°C
coolant temperature (inlet into CHP unit) max	40,0	°C
nominal flow rate	2,7	kg/s
max. working pressure	300	kPa
water volume in CHP unit circuit	120	dm^3

1) Parameters are valid if the dry cooler (optional) is part of delivery

Fuel, Gas Inlet

low heat value	34	MJ/m ³
min. methane number	80	
gas pressure	8 ÷ 15	kPa
max. pressure change under varying consumption	10	%
max. gas temperature	35	°C

Combustion and Ventilation Air

unused heat removed by the ventilation air	54	kW
amount of combustion air	3291	Nm³/hr
outdoor air temperature, min / max	-20/35	°C
max. air temperature at the outlet flange	50	°C

Exhaust Gas and Condensate Outlet

amount of exhaust gases	3406	Nm³/hr
exhaust gas temperature, nominal / max	120/150	°C
max. back-pressure of exhaust gases downstream the CHP unit flange	10	mbar
speed of exhaust gases at the outlet (DN 350)	14,2	m/s

Lubricant Charges

amount of lubrication oil in the engine	135	dm ³
volume of engine additional oil tank	260	dm^3
replenishment oil tank volume	400	dm ³

Noise Parameters

CHP unit in 10 m from container	76	dB(A)

Electrical Parameters		
nominal voltage	230/400	V
nominal frequency	50	Hz
power factor ¹⁾	0,81	
nominal current at cos φ=0.8	1440	Α
generator circuit breaker	NS1600 H 3P	
short-circuit resistance of switchboard R1	35	kA
short-circuit resistance of switchboards R2, R3, R4 and R5	10	kA
contribution of the actual source to the short-circuit current	< 15	kA
protection of power switchboard R1 closed/open	IP 31/00	
protection of control switchboard R2 closed/open	IP 31/00	
protection of frequency changers' switchboard R3 closed/open	IP 31/00	
protection of engine switchboard R4 closed/open	IP 31/00	
protection of cooling switchboard R5 closed/open	IP 66/00	
recommended superior protection	1600	Α
recommended connection cable ²⁾ (I< 50m, at t<35°C)	4×NYY (3×240+120)	

¹⁾ Power factor adjustable from 0,81C ÷ 1 ÷ 0,81L (range from 0.81C ÷ 1 must be verified according to the various types of generators).

Operation of the generator with a power factor of less than 0.95 causes a power limitation sets the following table:

power factor [-]	1	0,95	0,81
output [% Pnom]	100	100	98

²⁾ The stated cables are for information only. A check calculation for temperature rise and voltage drop must be made according to the actual length, placement and type of the cable (maximum allowed voltage drop is 10 V)

Colour Version

engine	e and generator, internal parts of unit	t RAL 5010 (blue)
contai	ner	RAL 5013 (blue)

L = inductive load - overexcited

C = capacitive load - underexcited

Unit Dimensions and Weights

total length	13500	mm
total width	3000	mm
height total / transport	8000 / 3000	mm
service weight of the entire CHP unit	29220	kg

Caution

Manufacturer reserves the right to alter this document and the linked source materials.

