

Basic Technica	I Data	l		
nominal electrical output			600	kW
maximum heat output 1)			639	kW
load	50	75	100	%
maximum heat output	376	510	639	kW
fuel input	772	1087	1400	kW
electrical efficiency	38,9	41,4	42,9	%
heat efficiency	48,7	46,9	45,6	%
total efficiency (fuel utilization)	87,6	88,3	88,5	%
gas consumption	119	167	215	Nm³/hr

The Basic Technical Data are applicable for the standard conditions pursuant to the "Technical instructions" document.

The minimum permanent electrical output must not drop below 50 % of the nominal output.

Gas consumption is mentioned for biogas with methane content 65%, at normal conditions (0°C, 101,325 kPa).

Gas consumption tolerance, or fuel input tolerance, at 100% load is +5%.

Tolerance of other parameters are mentioned in "Technical Instructions-Validity of Technical Data" document.

1) Maximum heat output is a sum of heat outputs of secondary circuit with exhaust gas cooled to 150°C and aftercooler circuit

Observance of Emission Limits

emissions	NOx	CO	
with 5% of O ₂ in exhaust gases	500	650	mg/Nm ³

Generator

type	MJB 400	MJB 400 LC4		
producer	MARE	MARELLI		
cos φ	1,0			
efficiency in the working point	96,8	%		
voltage	400	V		
frequency	50	Hz		

Engine

type	TCG 30°	TCG 3016 V12		
producer	MW	MWM		
number of cylinders	12			
arrangement of cylinders	V			
$bore \times stroke$	132/160	mm		
displacement	26	dm ³		
compression ratio	14,6 : 1			
speed	1500	rpm		
nominal oil consumption	0,1	g/kWh		
max. engine output	620	kW		

TCG 3016 V12 BG65%CH4; 14.12.2017

Thermal System

Secondary Circuit

heat carrier	water	
circuit's heat output	600	kW
nominal water temperature, input / output	70/90	°C
nominal temperature drop	20	°C
return water temperature, min / max	40/70	°C
nominal flow rate	7,2	kg/s
max. working pressure	600	kPa
min. pressure in system	100	kPa
water volume in CHP unit circuit ¹⁾	570	dm ³
pressure loss at the nominal flow rate ¹⁾	90	kPa

¹⁾ total value (engine-generator in sound enclosure and exhaust gas module without connecting pipeline)

Utilization of exhaust gas output for other purposes

heat output of exhaust gases (cooling to 150°C)	270	kW
exhaust gas temperature	418	°C

Primary Circuit

heat carrier	water + ethylene glycol	
ethylene glycol's concentration	35	%
circuit's heat output	330	kW
max. working pressure	300	kPa
water volume in CHP unit circuit	100	dm ³

Aftercooler Circuit

heat carrier	water + ethylene glycol	
ethylene glycol's concentration	35	%
circuit's heat output	39	kW
coolant temperature (outlet from CHP unit – informative)	49,0	°C
coolant temperature (inlet into CHP unit) max	45,0	°C
nominal flow rate	2,2	kg/s
pressure reserve at the nominal flow rate 1)	70	kPa
highest allowed maximal hydrostatic height of system	10	m
maximal connect-able volume of system outside the module of CHP unit ³⁾	75	dm ³
max. working pressure	300	kPa
min. working pressure	50	kPa
water volume in CHP unit circuit	20	dm ³

¹⁾ pressure reserve of internal part for covering pressure losses of external parts of circuit (interconnection pipeline and dry cooler)
2) if connected volume overstep mentioned value, it is necessary to install into system additional expansion vessel

Fuel, Gas Inlet % methane content 65 minimal methane content > 45 % 23,4 MJ/Nm³ low heat value kPa 6 gas pressure max. pressure change under varying 10 % consumption

35

°C

Combustion and Ventilation Air

max. gas temperature

unused heat removed by the ventilation air	43	kW
air temperature at the ventilation inlet min / max	20 - 35	°C
air temperature at the ventilation recommended	25	°C
amount of combustion air	2370	Nm³/hr
max. amount of ventilation air at the outlet flange	15160	m³/hr
max. air temperature at the outlet flange	50	°C
max. counter-pressure on flanges of ventilation air 1)	120	Pa

¹⁾ total sum of pressure losses of connected ventilation pipeline without necessity of using additional fun

Exhaust Gas and Condensate Outlet

amount of exhaust gases	2563	Nm³/hr
exhaust gas temperature between engine- generator set and exhaust exchanger nominal / max	418/550	°C
exhaust gas temperature, nominal / max	150/180	°C
permissible pressure loss of the interconnecting and following exhaust piping	10	mbar
speed of exhaust gases at the outlet (DN 300)	15,6	m/s

Lubricant Charges

amount of lubrication oil in the engine	420	dm ³
replenishment oil tank volume	320	dm^3

Noise Parameters

version	standard	option ¹⁾	
sound enclosure of CHP unit at 1m	74		dB(A)
ventilation inlet and outlet at 1m from the silencer	80	65	dB(A)
exhaust gas outlet at 1m from the silencer flange	80	60	dB(A)

¹⁾ noise parameters can be reduced by optimizing components to the required acoustic pressure level

Electrical Parameters				
nominal voltage	230/400	V		
nominal frequency	50	Hz		
power factor ¹⁾	0,87			
nominal current at cos φ=0.87	1000	Α		
generator circuit breaker	NS1000 H 3P			
short-circuit resistance of switchboard R1	35	kA		
short-circuit resistance of switchboards R2, R4	10	kA		
contribution of the actual source to the short-circuit current	< 10	kA		
protection of power switchboard R1 closed/open	IP 31/00			
protection of control switchboard R2 closed/open	IP 31/00			
protection of engine switchboard R4 closed/open	IP 31/00			
recommended superior protection	1250	Α		
recommended connection cable ²⁾ (I< 50m, at t<35°C)	3×NYY (3×240+120)			
1) Power factor adjustable from 0.87C ÷ 1 ÷ 0.87L (range from 0.87C				

¹⁾ Power factor adjustable from 0,87C ÷ 1 ÷ 0,87L (range from 0.87C

Operation of the generator with a power factor of less than 0.95 causes a power limitation sets the following table:

power factor [-]	1	0,95	0,87
output [% Pnom]	100	100	99

2) The stated cables are for information only. A check calculation for temperature rise and voltage drop must be made according to the actual length, placement and type of the cable (maximum allowed voltage drop is 10 V)

Colour Version

engine and generator	RAL 5010 (blue)
base frame	RAL 9017 (black)
sound enclosure	RAL 5013 (blue)

Unit Dimensions and Weights

dimensional drawing	R0573	
service weight	16140	kg

Caution

Manufacturer reserves the right to alter this document and the linked source materials.

^{÷ 1} must be verified according to the various types of generators).

L = inductive load - overexcited

C = capacitive load - underexcited