

Basic Technica	Data	l		
nominal electrical output			600	kW
maximum heat output1)			639	kW
load	50	75	100	%
maximum heat output	376	510	639	kW
fuel input	772	1087	1400	kW
electrical efficiency	38,*	41,4	42,9	%
heat efficiency	48,7	46,9	45,6	%
total efficiency (fuel utilization)	87,6	88,3	88,5	%
gas consumption	119	167	215	Nm³/hr

The Basic Technical Data are applicable for the standard conditions pursuant to the "Technical instructions" document.

The minimum permanent electrical output must not drop below 50 % of the nominal output.

Gas consumption is mentioned for biogas with methane content 65%, at normal conditions (0°C, 101,325 kPa).

Gas consumption tolerance, or fuel input tolerance, at 100% load is +5%.

Tolerance of other parameters are mentioned in "Technical Instructions-Validity of Technical Data" document.

1) Maximum heat output is a sum of heat outputs of secondary circuit with exhaust gas cooled to 150°C and aftercooler circuit

Observance of Emission Limits

emissions	NOx	CO	
with 5% of O ₂ in exhaust gases	500	650	mg/Nm ³

Generator

type	MJB 400 LC4		
producer	MARELLI		
cos φ	1,0		
efficiency in the working point	96,8	%	
voltage	400	V	
frequency	50	Hz	

Engine

type	TCG 3016 V12	
producer	MWM	
number of cylinders	12	
arrangement of cylinders	V	
$bore \times stroke$	132/160	mm
displacement	26	dm ³
compression ratio	14,6 : 1	
speed	1500	rpm
nominal oil consumption	0,1	g/kWh
max. engine output	620	kW

TCG 3016 V12 BG65%CH4; 14.12.2017

Thermal System

Secondary Circuit

heat carrier	water	
circuit's heat output	600	kW
nominal water temperature, input / output	70/90	°C
nominal temperature drop	20	°C
return water temperature, min / max	40/70	°C
nominal flow rate	7,2	kg/s
max. working pressure	600	kPa
allowed operation over-pressure on connecting flanges 1)	450	kPa
min. pressure in system	100	kPa
water volume in CHP unit circuit	80	dm ³
pressure reserve of pump for covering pressure losses outside container	50	kPa

¹⁾ highest allowed over-pressure created by connected system to secondary circuit in place of connecting flanges.

Primary Circuit

heat carrier		water + ethylene glycol	
ethylene glycol's concentration	35	%	
circuit's heat output	600	kW	
max. working pressure	300	kPa	
water volume in CHP unit circuit	660	dm ³	

Aftercooler Circuit 1)

heat carrier	water + ethylene glycol	
ethylene glycol's concentration	35	%
circuit's heat output	39	kW
coolant temperature (outlet from CHP unit – informative)	49,0	°C
coolant temperature (inlet into CHP unit) max	45,0	°C
nominal flow rate	2,2	kg/s
max. working pressure	300	kPa
water volume in CHP unit circuit	95	dm^3

¹⁾ Parameters are valid if the dry cooler (optional) is part of delivery

Fuo	Gae	Inl	ot
rue	. Gas		eι

•		
methane content	65	%
minimal methane content	> 45	%
low heat value	23,4	MJ/Nm ³
gas pressure	6	kPa
max. pressure change under varying consumption	10	%
max. gas temperature	35	°C

Combustion and Ventilation Air

unused heat removed by the ventilation air	43	kW
amount of combustion air	2370	Nm³/hr
outdoor air temperature, min / max	-20/35	°C
max. air temperature at the outlet flange	50	°C

Exhaust Gas and Condensate Outlet

amount of exhaust gases	2563	Nm³/hr
exhaust gas temperature, nominal / max	150/180	°C
max. back-pressure of exhaust gases downstream the CHP unit flange	10	mbar
speed of exhaust gases at the outlet (DN 300)	15,6	m/s

Lubricant Charges

amount of lubrication oil in the engine	420	dm ³
replenishment oil tank volume	320	dm ³

Noise Parameters

Electrical Parameters		
nominal voltage	230/400	V
nominal frequency	50	Hz
power factor ¹⁾	0,87	
nominal current at $\cos \phi$ =0.87	1000	Α
generator circuit breaker	NS1000 H 3P	
short-circuit resistance of switchboard R1	35	kA
short-circuit resistance of switchboards R2, R4	10	kA
contribution of the actual source to the short-circuit current	< 10	kA
protection of power switchboard R1 closed/open	IP 31/00	
protection of control switchboard R2 closed/open	IP 31/00	
protection of engine switchboard R4 closed/open	IP 31/00	
recommended superior protection	1250	Α
recommended connection cable ²⁾ (I< 50m, at t<35°C)	3×NYY (3×240+120)	

¹⁾ Power factor adjustable from 0,87C ÷ 1 ÷ 0,87L (range from 0.87C

Operation of the generator with a power factor of less than 0.95 causes a power limitation sets the following table:

power factor [-]	1	0,95	0,87
output [% Pnom]	100	100	99

²⁾ The stated cables are for information only. A check calculation for temperature rise and voltage drop must be made according to the actual length, placement and type of the cable (maximum allowed voltage drop is 10 V)

Colour Version

engine and generator, internal parts of unit	RAL 5010 (blue)
container	RAL 5013 (blue)

Unit Dimensions and Weights

dimensional drawing	R0774	
service weight of the entire CHP unit	27100	kg

Caution

Manufacturer reserves the right to alter this document and the linked source materials.

^{÷ 1} must be verified according to the various types of generators).

L = inductive load - overexcited

C = capacitive load - underexcited