

Basic Technica	I Data	l		
nominal electrical output			2000	kW
maximum heat output1)			2138	kW
load	50	75	100	%
maximum heat output	1237	1688	2138	kW
fuel input	2535	3588	4651	kW
electrical efficiency	39,4	41,8	43,0	%
heat efficiency	48,8	47,0	46,0	%
total efficiency (fuel utilization)	88,2	88,8	89,0	%
gas consumption	390	552	716	Nm³/hr

The Basic Technical Data are applicable for the standard conditions pursuant to the "Technical instructions" document.

The minimum permanent electrical output must not drop below 50 % of the nominal output.

Gas consumption is mentioned for biogas with methane content 65%, at normal conditions (0°C, 101,325 kPa). Gas consumption tolerance, or fuel input tolerance, at 100% load is

Gas consumption tolerance, or fuel input tolerance, at 100% load is +5%.

Tolerance of other parameters are mentioned in "Technical Instructions-Validity of Technical Data" document.

1) Maximum heat output is a sum of heat outputs of secondary circuit with exhaust gas cooled to 150°C and aftercooler circuit

Observance of Emission Limits

emissions	NOx	CO	
with 5% of O ₂ in exhaust gases	500	650	mg/Nm ³

Generator

type	MJB 560 LA4		
producer	MARELLI		
cos φ	0,8/1,0		
efficiency in the working point	97,3	%	
voltage	400	V	
frequency	50	Hz	

Engine

type	TCG 202	TCG 2020 V20		
producer	MW	M		
number of cylinders	20			
arrangement of cylinders	V			
$bore \times stroke$	170/195	mm		
displacement	89	dm ³		
compression ratio	14:1			
speed	1500	rpm		
nominal oil consumption	0,15	g/kWh		
max. engine output	2055	kW		

TCG 2020V20 BG65% CH4; 30.1.2017

Thermal System

Secondary Circuit

heat carrier	water	
circuit's heat output	2015	kW
nominal water temperature, input / output	70/90	°C
nominal temperature drop	20	°C
return water temperature, min / max	40/70	°C
nominal flow rate	24,1	kg/s
max. working pressure	600	kPa
allowed operation over-pressure on connecting flanges 1)	450	kPa
min. pressure in system	100	kPa
water volume in CHP unit circuit	280	dm ³
pressure reserve of pump for covering pressure losses outside container	50	kPa

¹⁾ highest allowed over-pressure created by connected system to secondary circuit in place of connecting flanges.

Primary Circuit

heat carrier		water + ethylene glycol	
ethylene glycol's concentration	35	%	
circuit's heat output	2015	kW	
max. working pressure	300	kPa	
water volume in CHP unit circuit	2400	dm ³	

Aftercooler Circuit 1)

heat carrier	water + ethylene glycol	
ethylene glycol's concentration	35	%
circuit's heat output	123	kW
coolant temperature (outlet from CHP unit – informative)	53,0	°C
coolant temperature (inlet into CHP unit) max	50,0	°C
nominal flow rate	11,1	kg/s
max. working pressure	300	kPa
water volume in CHP unit circuit	330	dm ³

¹⁾ Parameters are valid if the dry cooler (optional) is part of delivery

Е.,	ما	C	00	lal	o+
гu	eı.	. Uč	is i	ш	eι

methane content	65	%
minimal methane content	> 45	%
low heat value	23,4	MJ/Nm ³
gas pressure	6	kPa
max. pressure change under varying consumption	10	%
max. gas temperature	35	°C

Combustion and Ventilation Air

unused heat removed by the ventilation air	128	kW
amount of combustion air	7715	Nm³/hr
outdoor air temperature, min / max	-20/35	°C
max. air temperature at the outlet flange	50	°C

Exhaust Gas and Condensate Outlet

amount of exhaust gases	8365	Nm³/hr
exhaust gas temperature, nominal / max	150/180	°C
max. back-pressure of exhaust gases downstream the CHP unit flange	10	mbar
speed of exhaust gases at the outlet (DN 500)	18,3	m/s

Lubricant Charges

amount of lubrication oil in the engine	300	dm ³
volume of engine additional oil tank	685	dm ³
replenishment oil tank volume	650	dm ³

Noise Parameters

CHP unit in 10 m from container	78	dB(A)

Electrical Parameters		
nominal voltage	230/400	V
nominal frequency	50	Hz
power factor ¹⁾	0,81	
nominal current at cos φ=0.8	3600	Α
generator circuit breaker	NW40 H1 3P	
short-circuit resistance of switchboard R1	40	kA
short-circuit resistance of switchboards R2, R3, R4 and R5	10	kA
contribution of the actual source to the short-circuit current	< 40	kA
protection of power switchboard R1 closed/open	IP 31/00	
protection of control switchboard R2 closed/open	IP 31/00	
protection of frequency changers' switchboard R3 closed/open	IP 31/00	
protection of engine switchboard R4 closed/open	IP 31/00	
protection of cooling switchboard R5 closed/open	IP 66/00	
recommended superior protection	4000	Α
recommended connection cable ²⁾ (I< 50m, at t<35°C)	9×NYY (3×240+120)	

¹⁾ Power factor adjustable from 0,89C ÷ 1 ÷ 0,89L (range from 0.89C ÷ 1 must be verified according to the various types of generators).

Operation of the generator with a power factor of less than 0.95 causes a power limitation sets the following table:

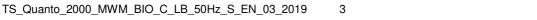
power factor [-]	1	0,95	0,89	
output [% Pnom]	100	100	98	

²⁾ The stated cables are for information only. A check calculation for temperature rise and voltage drop must be made according to the actual length, placement and type of the cable (maximum allowed voltage drop is 10 V)

Colour Version

engine and generator, internal parts of unit	RAL 5010 (blue)
container	RAL 5013 (blue)

L = inductive load - overexcited C = capacitive load - underexcited



Unit Dimensions and Weights

length total / transport	20000 / 16300	mm
width total / transport	5500 / 3300	mm
height total / transport	10000 / 3300	mm
service weight of the entire CHP unit	57720	kg

Caution

Manufacturer reserves the right to alter this document and the linked source materials.

