Datasheet

Basic Technical	Data	l		
nominal electrical output			1200	kW
maximum heat output ¹⁾			1295	kW
load	50	75	100	%
maximum heat output	739	1019	1295	kW
fuel input	1487	2119	2748	kW
electrical efficiency	40,3	42,5	43,7	%
heat efficiency	49,7	48,1	47,1	%
total efficiency (fuel utilization)	90,0	90,6	90,8	%
gas consumption	157	224	291	m³/hr

The Basic Technical Data are applicable for the standard conditions pursuant to the "Technical instructions" document.

The minimum permanent electrical output must not drop below 50 % of the nominal output.

Gas consumption is expressed under the invoicing conditions (15°C, 101.325 kPa).

Gas consumption tolerance, or fuel input tolerance, at 100% load is +5%.

Tolerances of other parameters are mentioned in "Technical Instructions-Validity of Technical Data" document.

1) Maximum heat output is a sum of heat outputs of secondary circuit with exhaust gas cooled to 120°C and aftercooler circuit

Observance of Emission Limits

emissions 1)	CO	NOx	
with 5% of O ₂ in exhaust gases	300	500	mg/Nm ³

1) Mentioned emission values of NOx are possible to decrease down to $100 {\rm mg/Nm^3}$ (an option).

Generator

type	MJB 450	LB4
producer	MARE	LLI
cos φ	0,8/1,0	
efficiency in the working point	97,4	%
voltage	400	V
frequency	50	Hz

Engine

type	TCG 202	TCG 2020 V12		
producer	MW	MWM		
number of cylinders	12			
arrangement of cylinders	V			
$bore \times stroke$	170/195	mm		
displacement	53	dm^3		
compression ratio	13,0 : 1			
speed	1500	rpm		
nominal oil consumption	0,2	g/kWh		
max. engine output	1232	kW		

TCG2020V12 400V natural gas; 26.01.2017

Thermal System

Secondary Circuit

heat carrier	water	
circuit's heat output	1189	kW
nominal water temperature, input / output	70/90	°C
nominal temperature drop	20	°C
return water temperature, min / max	40/70	°C
nominal flow rate	14,2	kg/s
max. working pressure	600	kPa
allowed operation over-pressure on connecting flanges 1)	450	kPa
min. pressure in system	100	kPa
water volume in CHP unit circuit	150	dm^3
pressure reserve of pump for covering pressure losses outside container	50	kPa

¹⁾ highest allowed over-pressure created by connected system to secondary circuit in place of connecting flanges.

Primary Circuit

heat carrier		water + ethylene glycol		
ethylene glycol's concentration	35	%		
circuit's heat output	1189	kW		
max. working pressure	300	kPa		
water volume in CHP unit circuit	1500	dm ³		

Aftercooler Circuit 1)

heat carrier	water + ethylene glycol	
ethylene glycol's concentration	35	%
circuit's heat output	106	kW
coolant temperature (outlet from CHP unit – informative)	43,0	°C
coolant temperature (inlet into CHP unit) max	40,0	°C
nominal flow rate	9,7	kg/s
max. working pressure	300	kPa
water volume in CHP unit circuit	225	dm^3

¹⁾ Parameters are valid if the dry cooler (optional) is part of delivery

Fu	ام	(Ga	9	Inl	Δŧ
u				Ю.		CL

low heat value	34	MJ/m ³
min. methane number	80	
gas pressure	8 ÷ 15	kPa
max. pressure change under varying consumption	10	%
max. gas temperature	35	°C

Combustion and Ventilation Air

unused best removed by the ventilation air	72	kW
unused heat removed by the ventilation air	73	KVV
amount of combustion air	4895	Nm ³ /hr
outdoor air temperature, min / max	-20/35	°C
max. air temperature at the outlet flange	50	°C

Exhaust Gas and Condensate Outlet

amount of exhaust gases	5063	Nm ³ /hr
exhaust gas temperature, nominal / max	120/150	°C
max. back-pressure of exhaust gases downstream the CHP unit flange	10	mbar
speed of exhaust gases at the outlet (DN 400)	16,1	m/s

Lubricant Charges

amount of lubrication oil in the engine	205	dm ³
volume of engine additional oil tank	510	dm^3
replenishment oil tank volume	800	dm ³

Noise Parameters

CHP unit in 10 m from container	78	dB(A)
---------------------------------	----	-------

Electrical Parameters		
nominal voltage	230/400	V
nominal frequency	50	Hz
power factor ¹⁾	0,87	
nominal current at $\cos \phi$ =0.8	2000	Α
generator circuit breaker	NW25 H1 3P	
short-circuit resistance of switchboard R1	40	kA
short-circuit resistance of switchboards R2, R3, R4 and R5	10	kA
contribution of the actual source to the short-circuit current	< 20	kA
protection of power switchboard R1 closed/open	IP 31/00	
protection of control switchboard R2 closed/open	IP 31/00	
protection of frequency changers' switchboard R3 closed/open	IP 31/00	
protection of engine switchboard R4 closed/open	IP 31/00	
protection of cooling switchboard R5 closed/open	IP 66/00	
recommended superior protection	2250	Α
recommended connection cable ²⁾ (I< 50m, at t<35°C)	5×NYY (3×240+120)	

¹⁾ Power factor adjustable from 0,87C ÷ 1 ÷ 0,87L (range from 0.87C ÷ 1 must be verified according to the various types of generators).

Operation of the generator with a power factor of less than 0.95 causes a power limitation sets the following table:

power factor [-]	1	0,95	0,87
output [% Pnom]	100	100	98

²⁾ The stated cables are for information only. A check calculation for temperature rise and voltage drop must be made according to the actual length, placement and type of the cable (maximum allowed voltage drop is 10 V)

Colour Version

engine and generator, internal parts of unit	RAL 5010 (blue)
container	RAL 5013 (blue)

L = inductive load - overexcited

C = capacitive load - underexcited

Unit Dimensions and Weights

total length	14500	mm
width total / transport	6000 / 3000	mm
height total / transport	10000 / 3000	mm
service weight of the entire CHP unit	37230	kg

Caution

Manufacturer reserves the right to alter this document and the linked source materials.

